Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Adv Healthc Mater ; : e2400623, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691766

ABSTRACT

The immunosuppressive tumor microenvironment (ITME) of osteosarcoma (OS) poses a significant obstacle to the efficacy of existing immunotherapies. Despite the attempt of novel immune strategies such as immune checkpoint inhibitors and tumor vaccines, their effectiveness remains suboptimal due to the inherent difficulty in mitigating ITME simultaneously from both the tumor and immune system. The promotion of anti-tumor immunity through the induction of immunogenic cell death and activation of the cGAS-STING pathway has emerged as potential strategies to counter the ITME and stimulate systemic antitumor immune responses. Here, a bimetallic polyphenol-based nanoplatform (Mn/Fe-Gallate nanoparticles coated with tumor cell membranes is presented, MFG@TCM) which combines with mild photothermal therapy (PTT) for reversing ITME via simultaneously inducing pyroptosis in OS cells and activating the cGAS-STING pathway in dendritic cells (DCs). The immunostimulatory pathways, through the syngeneic effect, exerted a substantial positive impact on promoting the secretion of damage-associated molecular patterns (DAMPs) and proinflammatory cytokines, which favors remodeling the immune microenvironment. Consequently, effector T cells led to a notable antitumor immune response, effectively inhibiting the growth of both primary and distant tumors. This study proposes a new method for treating OS using mild PTT and immune mudulation, showing promise in overcoming current treatment limitations.

2.
Immun Inflamm Dis ; 12(4): e1236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652009

ABSTRACT

OBJECTIVE: To explore the role of miRNA in liver damage caused by Echinococcus multilocularis infection. METHODS: Six female C57BL mice were randomly divided into two groups, the control group and the infection group. Mice in the control group were injected with 100 µL PBS through the hepatic portal vein, and mice in the infection group were infected with E. multilocularis via the hepatic portal vein to establish a mouse model of infection. Small RNA sequencing was performed for detecting the expression of miRNAs in the liver of mice infected with 2000 E. multilocularis after 3 months of infection, screen out miRNAs related to liver damage, and verify by RT-PCR. RESULTS: Seventy-one differentially expressed miRNAs were found in the liver in comparison with control, and a total of 36 mouse miRNAs with |FC| >0.585 were screened out, respectively. In addition, Targetscan (V5.0) and miRanda (v3.3a) software were used to predict differential miRNAs target genes and functional enrichment of target genes. Functional annotation showed that "cytokine-cytokine interaction," "positive regulation of cytokine production," "inflammatory response," and "leukocyte activation" were enriched in the liver of E. multilocularis-infected mice. Moreover, the pathways "human cytomegalovirus infection," "cysteine and methionine metabolism," "Notch signaling pathway," and "ferroptosis" were involved in liver disease. Furthermore, four miRNAs (mmu-miR-30e-3p, mmu-miR-203-3p, mmu-miR-125b-5p, and mmu-miR-30c-2-3p) related to liver injury were screened and verified. CONCLUSION: This study revealed that the expression profiling of miRNAs in the livers was changed after E. multilocularis infection, and improved our understanding of the transcriptomic landscape of hepatic echinococcosis in mice.


Subject(s)
Echinococcus multilocularis , Liver , Mice, Inbred C57BL , MicroRNAs , Portal Vein , Animals , MicroRNAs/genetics , Mice , Female , Portal Vein/pathology , Portal Vein/parasitology , Echinococcus multilocularis/genetics , Liver/parasitology , Liver/metabolism , Liver/pathology , Disease Models, Animal , Gene Expression Profiling , Echinococcosis/pathology
3.
ACS Appl Mater Interfaces ; 16(11): 13674-13684, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457219

ABSTRACT

Flexible and stretchable triboelectric nanogenerators (TENGs) have been rapidly advanced owing to the demand for portable and wearable electronic devices that can work under universal or motional circumstances. While versatile materials can be applied in a TENG as dielectric materials, flexible and cost-effective electrodes are crucially important for the output performance of TENGs. Herein, we developed a poly(vinyl alcohol) (PVA) hydrogel TENG doped with a novel two-dimensional material, graphitic carbon nitride (g-C3N4), which could act as both a cost-effective flexible electrode and a positive dielectric for TENG with different morphologies. The measured peak-to-peak open-circuit voltage of the TENG reached 80 V at a dopant concentration of 2.7 wt % in single-electrode mode, which is far higher than that of the pristine PVA hydrogel TENG. As a demonstration of the application, the g-C3N4/PVA hydrogel TENG can be adopted as electronic skin to monitor the movement of the human body. Low-frequency mechanical energy-harvesting devices in different morphologies including discoid flake shape, tube shape, and spiral shape in the single-electrode mode or contact-separation mode have been designed, fabricated, and evaluated. All of these merits of the proposed hydrogel TENG after doping two-dimensional (2D) material g-C3N4 have demonstrated their promising potential for versatile applications in biomechanical energy harvesting and self-powered sensing.

4.
Nanomicro Lett ; 16(1): 149, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466478

ABSTRACT

Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables. Ink printing is desirable for e-textile development using a simple and inexpensive process. However, fabricating high-performance atop textiles with good dispersity, stability, biocompatibility, and wearability for high-resolution, large-scale manufacturing, and practical applications has remained challenging. Here, water-based multi-walled carbon nanotubes (MWCNTs)-decorated liquid metal (LM) inks are proposed with carbonaceous gallium-indium micro-nanostructure. With the assistance of biopolymers, the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs. E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating, enabling good flexibility, hydrophilicity, breathability, wearability, biocompatibility, conductivity, stability, and excellent versatility, without any artificial chemicals. The obtained e-textile can be used in various applications with designable patterns and circuits. Multi-sensing applications of recognizing complex human motions, breathing, phonation, and pressure distribution are demonstrated with repeatable and reliable signals. Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs. As proof of concept, this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.

5.
Connect Tissue Res ; 65(2): 133-145, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38492210

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease that affects millions worldwide. Synovitis and macrophage polarization are important factors in the development of OA. However, the specific components of synovial fluid (SF) responsible for promoting macrophage polarization remain unclear. METHODS: Semi-quantitative antibody arrays were used to outline the proteome of SF. Differential expression analysis and GO/KEGG were performed on the obtained data. Immunohistochemistry and ELISA were used to investigate the relationship between SF S100A12 levels and synovitis levels in clinalclinical samples. In vitro cell experiments were conducted to investigate the effect of S100A12 on macrophage polarization. Public databases were utilized to predict and construct an S100A12-centered lncRNA-miRNA-mRNA competing endogenous RNA network, which was preliminarily validated using GEO datasets. RESULTS: The study outlines the protein profile in OA and non-OA SF. The results showed that the S100A12 level was significantly increased in OA SF and inflammatory chondrocytes. The OA synovium had more severe synovitis and higher levels of S100A12 than non-OA synovium. Exogenous S100A12 upregulated the levels of M1 markers and phosphorylated p65 and promoted p65 nuclear translocation, while pretreatment with BAY 11-7082 reversed these changes. It was also discovered that LINC00894 was upregulated in OA and significantly correlated with S100A12, potentially regulating S100A12 expression by acting as a miRNA sponge. CONCLUSIONS: This study demonstrated that S100A12 promotes M1 macrophage polarization through the NF-κB pathway, and found that LINC00894 has the potential to regulate the expression of S100A12 as a therapeutic approach.


Subject(s)
Osteoarthritis , S100A12 Protein , Synovitis , Humans , Macrophages/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , S100A12 Protein/metabolism , Signal Transduction
6.
Anaesth Crit Care Pain Med ; 43(2): 101361, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408640

ABSTRACT

BACKGROUND: The Catechol-O-methyltransferase (COMT) gene, responsible for encoding an enzyme crucial in the metabolism of catecholamines, is known to play a significant role in pain perception. Polymorphisms within this gene, particularly the COMT rs4680 genotypes, have been linked to various acute pain phenotypes. This prospective cohort study examines interactions among the genetic polymorphism COMT rs4680 genotypes, preoperative knee pain, and pain catastrophizing in chronic postsurgical pain (CPSP) at 3, 6, and 12 months post-total knee arthroplasty (TKA). STUDY DESIGN: A total of 280 patients undergoing primary unilateral TKA participated, sharing demographic details, preoperative knee pain levels, psychological variables (pain catastrophizing), and COMT rs4680 genotyping via venous blood samples. Telephone interviews at specified intervals enabled the application of binary logistic regressions and interaction models. RESULTS: Significant influences of preoperative knee pain and pain catastrophizing on postsurgical outcomes were observed. Specifically, at the first time point (T1, 3 months post-TKA), a notable moderation effect was identified in preoperative knee pain (R2 change = 0.026, p = 0.026). The Johnson-Neyman regions of significance (RoS) indicated these moderation effects were significant above a threshold of 17.18 (p = 0.05), accounting for 26.4%. At the third time point (T3, 12 months post-TKA), a complex three-way interaction among genotypes (GG, GA, and AA carriers) was evident, resulting in an R2 change of 0.051 (p = 0.009). Here, the RoS for pain catastrophizing was above 32.74 for 30.5% of GG genotype carriers, above 22.38 for 50.8% of GA carriers, and below 11.94 for 63.2% of AA carriers. CONCLUSION: This study illuminates the significant role of the COMT Val158Met rs4680 polymorphism in susceptibility to prolonged pain following TKA. It also elucidates how these genetic genotypes interplay with preoperative knee pain and pain catastrophizing. Such intricate genetic-psychological-pain relationships necessitate additional investigation to confirm these findings and potentially guide post-TKA pain management strategies.


Subject(s)
Arthroplasty, Replacement, Knee , Chronic Pain , Humans , Catechol O-Methyltransferase/genetics , Prospective Studies , Reactive Oxygen Species , Genotype , Pain, Postoperative/genetics , Catastrophization/genetics , Chronic Pain/genetics
7.
ACS Appl Mater Interfaces ; 16(10): 13305-13315, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421948

ABSTRACT

Photochromic materials with rapid color-switching, long color retention times, and rewritability are crucial for meeting the requirements of future rewritable ink-free media. However, these requirements are challenging to satisfy simultaneously due to the inherent constraints among these features. Herein, a novel photochromic nanofiber nonwoven fabric was designed and constructed based on a conjugated organic-inorganic hybrid structure through electrospinning and hot-pressing techniques. The as-prepared fabric can change color in merely 5 s under UV irradiation and can reach saturation within 2 min. In addition, upon the introduction of a potent metal chelator, its color retention time exceeds 14 days under ambient conditions, significantly longer than that of most rewritable materials recently reported (several hours to 5 days). Moreover, the fabric exhibits high writing resolution and can be photoprinted and heat-erased for over 100 cycles while still retaining 96% of its initial reflectivity. Hydrophobic thermoplastic polyurethane provides the fabric with excellent waterproof and antifouling properties, thus preventing the composite from swelling or collecting graffiti due to moisture or dust. This work exploits a competitive approach for designing flexible, rewritable, and superior functional wearables with practical applications.

8.
Article in English | MEDLINE | ID: mdl-38419498

ABSTRACT

Brucellosis is a global zoonotic infection caused by Brucella bacteria, which poses a significant burden on society. While transmission prevention is currently the most effective method, the absence of a licenced vaccine for humans necessitates the urgent development of a safe and effective vaccine. Recombinant protein-based subunit vaccines are considered promising options, and in this study, the Brucella BP26 protein is expressed using prokaryotic expression systems. The immune responses are evaluated using the well-established adjuvant CpG-ODN. The results demonstrate that rBP26 supplemented with a CpG adjuvant induces M1 macrophage polarization and stimulates cellular immune responses mediated by Th1 cells and CD8 + T cells. Additionally, it generates high levels of rBP26-specific antibodies in immunized mice. Furthermore, rBP26 immunization activates, proliferates, and produces cytokines in T lymphocytes while also maintaining immune memory for an extended period of time. These findings shed light on the potential biological function of rBP26, which is crucial for understanding brucellosis pathogenesis. Moreover, rBP26 holds promise as an effective subunit vaccine candidate for use in endemic areas.

9.
J Orthop Surg Res ; 19(1): 136, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347573

ABSTRACT

BACKGROUND: To investigate whether accurate placement of sustentaculum tali screws have the impacts on the clinical efficacy of calcaneal fractures. METHODS: A retrospective analysis of 72 cases (73 feet) of calcaneal fractures from September 2015 to September 2019 treated with open reduction and internal fixation with sustentaculum tali screws was conducted. Patients were divided into the sustentaculum tali fixation group (ST group) and the sustentaculum fragment fixation group (STF group) according to the location of the sustentaculum tali screw placement. The functional outcomes at preoperative, 7 days and 1 year postoperative were collected and analyzed. RESULTS: In the ST group (40 feet), the Gissane's angle altered from (109.89 ± 12.13)° to (121.23 ± 9.34)° and (119.08 ± 8.31)° at 7 days and 1 year postoperative, respectively. For Böhler's angles altered from (11.44 ± 5.94)°, to (31.39 ± 7.54)°, and (30.61 ± 7.94)° at 7 days and 1 year postoperative, respectively. In the STF group (33 feet), Gissane's angle altered from (110.47 ± 14.45)°, to (122.08 ± 8.84)°, and (120.67 ± 9.07)° and Böhler's angle altered from (11.32 ± 6.77)°, to (28.82 ± 8.52)°, and (28.25 ± 9.13)° (P < 0.001). However, there was no statistically significant difference in functional outcomes at 1 week after surgery and 1 year after surgery (P > 0.05). The AOFAS scores at the final follow-up of the two groups: ST group (88.95 ± 6.16) and STF group (89.78 ± 8.76); VAS scores, ST group (0.83 ± 0.98) and STF group (1.03 ± 1.59), all differences were not statistically significant (P > 0.05). CONCLUSION: The position of sustentaculum tali screws has no significant difference on the short-term clinical outcome in patients with calcaneal fractures, while reliable fixation of screws to sustentaculum tali fragment can achieve similar clinical outcome.


Subject(s)
Ankle Injuries , Calcaneus , Fractures, Bone , Knee Injuries , Humans , Retrospective Studies , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Foot , Calcaneus/diagnostic imaging , Calcaneus/surgery , Fracture Fixation, Internal , Bone Screws , Treatment Outcome
10.
Acta Trop ; 250: 107083, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070722

ABSTRACT

BACKGROUND: Alveolar echinococcosis (AE) can cause severe liver injury and be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver injury. Therefore, by exploring the changes of gene proteins in mice with damaged liver, we attempted to identify the key molecules of liver damage, and provide data that will enable the development of drugs targeting hepatic AE. METHODS: BALB/c mice were inoculated with protoscoleces via the hepatic portal vein. Three months later, B-ultrasound examination and Hematoxylin-eosin (H&E) staining were used to confirm liver damage in mice. RNA sequencing and Liquid chromatography-mass spectrometry (LC-MS) were used to screen differentially expressed molecules associated with liver damage through bioinformatics, and Quantitative Real-Time PCR (qRT-PCR) was used to verify their expression. RESULTS: B-ultrasound examination showed liver lesions in the infected group, and H&E staining showed liver inflammation, fibrosis and liver necrosis. RNA sequencing and LC-MS results showed changes in the levels of more than 1000 genes and proteins, with upregulation of immune and inflammation pathways. By contrast, the downregulated genes and proteins were mostly involved in various metabolic reactions. Correlation analysis was conducted between the transcriptome data and proteome data. The results revealed 240 differentially expressed genes, of which 192 were upregulated, and 48 were downregulated. Many of these genes were involved in metabolic reactions, such as Catalase (Cat), fatty acid synthase (Fasn), and IL-16 genes, which may have relevance to liver injury. The results of qRT-PCR were consistent with those of bioinformatics analysis. CONCLUSIONS: The mechanisms of liver injury in mice infected with Echinococcus multilocularis are complex, involving abnormal metabolism, oxidative stress, inflammatory response, and many other factors. This study provides the data for preliminary exploration for the development of targeted therapies against AE.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Liver Diseases , Mice , Animals , Liver , Echinococcus multilocularis/genetics , Inflammation , Transcriptome
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 482-489, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38151996

ABSTRACT

Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by infection with the larval stage of Echinococcus multilocularis and a major challenge to human public health. Vaccines are the most effective way to prevent and control infectious diseases. We previously revealed that the Echinocuccus granulosus recombinant protein P29 is a good vaccine candidate against E. granulosus. However, the protective and immunological mechanism of rEg.P29 against E. multilocularis remain unclear. In this study, CD4 + T cell-deficient mice are transferred with spleen CD4 + T cells isolated from wild-type mice and subjected to rEg.P29 immunization, and then these immunized mice are infected with E. multilocularis. The cyst inhibition rate is calculated by weighing the body and cyst weights. The level of antibody is detected by ELISA. Flow cytometry is used to detect the level of IFN-γ production by CD4 + T and CD8 + T cells. The cytokines in culture supernatant are detected by ELISA. The expressions of CD44 and CD62L on memory T cells are determined by flow cytometry. The results show the cyst inhibition rate is 41.52% after adoptive transfer of CD4 + T cells. Furthermore, the levels of IgG, IgM, IgA and IgE in serum are significantly increased compared with those in the PBS group. The IFN-γ-secretion by CD8 + T cells and the level of IFN-γ in culture supernatant are obviously increased; and the number of CD4 + T cells is increased, but the number of IFN-γ producing CD4 + T cells has no significant difference compared with PBS group. In addition, the number of CD44 +CD62L ‒CD8 + memory T cells in the spleen is significantly increased, while the number of CD44 ‒CD62L + CD8 + memory T cells is not significantly altered. Collectively, rEg.P29 can alleviate E. multilocularis infection by inducing humoral immune responses and CD8 + T cell responses.


Subject(s)
Cysts , Echinococcosis , Humans , Animals , Mice , Echinococcosis/prevention & control , Cytokines , CD8-Positive T-Lymphocytes , Zoonoses
13.
Front Genet ; 14: 1228372, 2023.
Article in English | MEDLINE | ID: mdl-38028606

ABSTRACT

A rare subtype of diffuse large B-cell lymphoma (DLBCL) has been reported to be accompanied by elevated immunoglobulin M (IgM) paraprotein in the serum at diagnosis, called as IgMs-DLBCL. The monoclonal IgM paraprotein disappears soon after treatment in most of these patients. Here, we described a DLBCL patient with continuously elevated IgM following therapy. A 59-year-old male was diagnosed with DLBCL (GCB subtype per Hans algorithm, stage IA) with involvement of the right cervical lymph node. After six cycles of immuno-chemotherapy with the R-CHOP regimen, complete metabolic remission was achieved, but an elevated level of serum IgM persisted. To investigate the origin of elevated IgM, pathologic, immunophenotypic, and molecular analyses of lymph node and bone marrow (BM) samples were performed pre- and post-treatment. BM infiltration of lymphoplasmacytic cells, and a typical immunophenotypic profile by flow cytometry supported the diagnosis of Waldenström macroglobulinemia (WM). The MCD subtype of DLBCL was identified by next-generation sequencing of the lymph node at initial diagnosis characterized by co-occurring point mutations in MYD88 L265P and CD79B. Additionally, two different dominant clonotypes of the immunoglobulin heavy chain (IGH) were detected in the lymph node and BM by IGH sequencing, which was IGHV 3-11*06/IGHJ 3*02 and IGHV 3-11*06/IGHJ 6*02, respectively, speculating to be two independent clonal origins. This study will provide a panoramic understanding of the origin or biological characteristics of DLBCL co-occurring with WM.

14.
Mol Biomed ; 4(1): 34, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37853288

ABSTRACT

The role of follicular T helper (Tfh) cells in humoral response has been considered essential in recent years. Understanding how Tfh cells control complex humoral immunity is critical to developing strategies to improve the efficacy of vaccines against SARS-CoV-2 and other emerging pathogens. However, the immunologic mechanism of Tfh cells in SARS-CoV-2 receptor binding domain (RBD) vaccine strategy is limited. In this study, we expressed and purified recombinant SARS-CoV-2 RBD protein in Drosophila S2 cells for the first time and explored the mechanism of Tfh cells induced by RBD vaccine in humoral immune response. We mapped the dynamic of Tfh cell in lymph node and spleen following RBD vaccination and revealed the relationship between Tfh cells and humoral immune response induced by SARS-CoV-2 RBD vaccine through correlation analysis, blocking of IL-21 signaling pathway, and co-culture of Tfh with memory B cells. Recombinant RBD protein elicited a predominant Tfh1 and Tfh1-17 subset response and strong GC responses in spleen and lymph nodes, especially to enhanced vaccination. IL-21 secreted by Tfh cells affected the development and differentiation of B cells and played a key role in the humoral immune response. These observations will help us further understand the mechanism of protective immune response induced by COVID-19 vaccine and has guiding significance for the development of vaccines against newly emerging mutants.

15.
Iran J Immunol ; 20(3): 348-358, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37458144

ABSTRACT

Background: Different subtypes of dendritic cells (DCs) can induce different types of immune responses. Our previous study found that Echinococcus granulosus (E. granulosus) antigens (Eg.ferritin, Eg.mMDH and Eg.10) stimulated DC differentiation to different subtypes and produced different immune responses. Objective: To further understand whether Eg.ferritin, Eg.mMDH and Eg.10 affect the DC-mediated immune response by promoting the differentiation of monocytes to DCs. Methods: Bone marrow-derived monocytes were exposed to three antigens of E. granulosus on days 0, 3, 5, and 7. The percentage of monocyte-derived DCs (moDCs), DCs subsets, and the expression of surface molecules of DCs at different time points in different groups were assessed by flow cytometry. The levels of cytokines of IL-1ß, IL-4, IL-6, IL-10, IL-13, IFN-γ, TNF-α, IL-12p70, IL-18, IL-23, and IL-27 in the cell culture supernatant were detected by multi-factorial detection technology. Results: The percentage of moDCs revealed that none of the three antigens blocked monocyte differentiation to DCs. The monocytes of 7-day-old cultures showed increased sensitivity to these antigens. The Eg.ferritin induced more mature DCs, which expressed high levels of MHC II and costimulatory molecules, and secreted Th1 cytokines. Eg10 and Eg.mMDH induced lower degrees of DC maturation, however differentiated DCs were in a semi-mature state due to low expression of MHC II and costimulatory molecules and secretion of higher Th2 and lower Th1 cytokines. Conclusion: Eg.ferritin promotes full maturation of DCs and induces Th1 immune response, whereas Eg.10 and Eg.mMDH induce semi-mature DCs producing higher levels of Th2 cytokines.


Subject(s)
Echinococcus granulosus , Monocytes , Animals , Dendritic Cells , Cytokines/metabolism , Cell Differentiation , Transcription Factors/metabolism , Ferritins/metabolism
16.
Knee Surg Sports Traumatol Arthrosc ; 31(10): 4559-4565, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37338624

ABSTRACT

PURPOSE: Arthroscopic superior capsule reconstruction (SCR) with the long head of the biceps (LHBT) was performed to restore structural stability, force couple balance, and shoulder joint function. This study aimed to evaluate the functional outcomes of SCR using the LHBT over at least 24 months of follow-up. METHOD: This retrospective study included 89 patients with massive rotator cuff tears who underwent SCR using the LHBT, met the inclusion criteria and underwent follow up for at least 24 months. The preoperative and postoperative shoulder range of motion (forward flexion, external rotation, and abduction), acromiohumeral interval (AHI), visual analog scale (VAS) score, American Shoulder and Elbow Surgeons (ASES) score and Constant-Murley score were obtained, and the tear size, and Goutallier and Hamada grades were also investigated. RESULTS: Compared with those measured preoperatively, the range of motion, AHI, and VAS, Constant-Murley, and ASES scores were significantly improved immediately postoperatively (P < 0.001) and at the 6-month, 12-month, and final follow-ups (P < 0.001). At the last follow-up, the postoperative ASES score and Constant-Murley score increased from 42.8 ± 7.6 to 87.4 ± 6.1, and 42.3 ± 8.9 to 84.9 ± 10.7, respectively; with improvements of 51 ± 21.7 in forward flexion, 21.0 ± 8.1 in external rotation, and 58.5 ± 22.5 in abduction. The AHI increased 2.1 ± 0.8 mm and the VAS score significantly changed from 6.0 (5.0, 7.0) to 1.0 (0.0, 1.0), at the final follow-up. Eleven of the 89 patients experienced retears, and one patient needed reoperation. CONCLUSION: In this study with at least 24-months of follow-up, SCR using the LHBT for massive rotator cuff tears could effectively relieve shoulder pain, restore shoulder function and increase shoulder mobility to some extent. LEVEL OF EVIDENCE: IV.


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Humans , Rotator Cuff Injuries/complications , Rotator Cuff Injuries/surgery , Shoulder Pain/etiology , Shoulder Pain/surgery , Retrospective Studies , Shoulder Joint/surgery , Treatment Outcome , Range of Motion, Articular , Arthroscopy
17.
Front Chem ; 11: 1144347, 2023.
Article in English | MEDLINE | ID: mdl-37228865

ABSTRACT

Introduction: Aptamers are valuable for bioassays, but aptamer-target binding is susceptible to reaction conditions. In this study, we combined thermofluorimetric analysis (TFA) and molecular dynamics (MD) simulations to optimize aptamer-target binding, explore underlying mechanisms and select preferred aptamer. Methods: Alpha-fetoprotein (AFP) aptamer AP273 (as the model) was incubated with AFP under various experimental conditions, and melting curves were measured in a real-time PCR system to select the optimal binding conditions. The intermolecular interactions of AP273-AFP were analysed by MD simulations with these conditions to reveal the underlying mechanisms. A comparative study between AP273 and control aptamer AP-L3-4 was performed to validate the value of combined TFA and MD simulation in selecting preferred aptamers. Results: The optimal aptamer concentration and buffer system were easily determined from the dF/dT peak characteristics and the melting temperature (Tm) values on the melting curves of related TFA experiments, respectively. A high Tm value was found in TFA experiments performed in buffer systems with low metal ion strength. The molecular docking and MD simulation analyses revealed the underlying mechanisms of the TFA results, i.e., the binding force and stability of AP273 to AFP were affected by the number of binding sites, frequency and distance of hydrogen bonds, and binding free energies; these factors varied in different buffer and metal ion conditions. The comparative study showed that AP273 was superior to the homologous aptamer AP-L3-4. Conclusion: Combining TFA and MD simulation is efficient for optimizing the reaction conditions, exploring underlying mechanisms, and selecting aptamers in aptamer-target bioassays.

18.
Signal Transduct Target Ther ; 8(1): 190, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37230992

ABSTRACT

3-Hydroxybutyrate (3HB) is a small ketone body molecule produced endogenously by the body in the liver. Previous studies have shown that 3HB can reduce blood glucose level in type 2 diabetic (T2D) patients. However, there is no systematic study and clear mechanism to evaluate and explain the hypoglycemic effect of 3HB. Here we demonstrate that 3HB reduces fasting blood glucose level, improves glucose tolerance, and ameliorates insulin resistance in type 2 diabetic mice through hydroxycarboxylic acid receptor 2 (HCAR2). Mechanistically, 3HB increases intracellular calcium ion (Ca2+) levels by activating HCAR2, thereby stimulating adenylate cyclase (AC) to increase cyclic adenosine monophosphate (cAMP) concentration, and then activating protein kinase A (PKA). Activated PKA inhibits Raf1 proto-oncogene serine/threonine-protein kinase (Raf1) activity, resulting in a decrease in extracellular signal-regulated kinases 1/2 (ERK1/2) activity and ultimately inhibiting peroxisome proliferator-activated receptor γ (PPARγ) Ser273 phosphorylation in adipocytes. Inhibition of PPARγ Ser273 phosphorylation by 3HB altered the expression of PPARγ regulated genes and reduced insulin resistance. Collectively, 3HB ameliorates insulin resistance in type 2 diabetic mice through a pathway of HCAR2/Ca2+/cAMP/PKA/Raf1/ERK1/2/PPARγ.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Insulin Resistance/genetics , Phosphorylation , PPAR gamma/genetics , 3-Hydroxybutyric Acid/pharmacology , Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics
19.
Phys Chem Chem Phys ; 25(22): 15271-15278, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37221910

ABSTRACT

Li-rich Mn-based layered materials are considered the most promising next-generation high-energy-density cathode materials due to their high capacity, but their large irreversible capacity loss and severe voltage attenuation hinder their practical application. The limited operating voltage also makes it difficult to satisfy the increasing demand of high energy density in future applications. Inspired by the high voltage platform of Ni-rich LiNi0.8Co0.1Mn0.1O2, we design and prepare a Li1.2Ni0.32Co0.04Mn0.44O2 (LLMO811) cathode material with increased Ni content via the acrylic acid polymerization method and regulate the amounts of excess lithium of LLMO. It is found that LLMO-L3 with 3% excess lithium has the highest initial discharge capacity of 250 mA h g-1 with a coulombic efficiency of 83.8%. Taking advantage of a high operating voltage of about 3.75 V, the material achieves an impressive high energy density of 947 W h kg-1. Moreover, the capacity at 1C reaches 193.2 mA h g-1, which is higher than that of ordinary LLMO811. This large capacity is attributed to the highly reversible O redox reaction, and the strategy used to achieve this would throw some light on the exploration of high-energy-density cathodes.

20.
Eur J Med Chem ; 254: 115327, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37098307

ABSTRACT

Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.


Subject(s)
Brain , Histone Deacetylase Inhibitors , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...